|   | 
Details
   web
Record
Author (up) Gil-Márquez, J.M.; Sültenfuß, J.; Andreo, B.; Mudarra, M.
Title Groundwater dating tools (3H, 3He, 4He, CFC-12, SF6) coupled with hydrochemistry to evaluate the hydrogeological functioning of complex evaporite-karst settings Type Journal Article
Year 2020 Publication Journal of Hydrology Abbreviated Journal
Volume 580 Issue Pages 124263
Keywords Groundwater dating, Evaporite karst, Brine spring, Free-shape models
Abstract The hydrogeological functioning of four different areas in a complex evaporite-karst unit of predominantly aquitard behavior in S Spain was investigated. Environmental dating tracers (3H, 3He, 4He, CFC-12, SF6) and hydrochemical data were determined from spring samples to identify and characterize groundwater flow components of different residence times in the media. Results show a general geochemical evolution pattern, from higher (recharge areas) to lower positions (discharge areas), in which mineralization rises as well as the value of the rCl−/SO42−, evidencing longer water-rock interaction. Ne values show degassing of most of the samples, favored by the high salinity of groundwater and the development of karstification so that the concentration of all the considered gases were corrected according to the difference between the theoretical and the measured Ne. The presence of modern groundwater in every sample was proved by the detection of 3H and CFC-12. At the opposite, the higher amount of radiogenic 4He in most samples also indicates that they have an old component. The 3H/3He dating method does not give reliable ages as a consequence of degassing and the large uncertainty of the 3He/4He ratios of the sources for the radiogenic Helium. The large SF6 concentrations suggest terrigenic production related to halite and dolomite. Binary Mixing and Free Shape Models were created based on 3H and CFC-12 data to interpret the age distribution of the samples. Two parameters (GA50 and >70%) were proposed as an indicator of that distribution, as they provide further information than the mean age. Particularly, GA50 is derived from the median groundwater age and is presented as a new way of interpreting mixed groundwater age data. A greater fraction of old groundwater (3H and CFC-12 free) was identified in discharge areas, while the proportion and estimated infiltration date of the younger fractions in recharge areas were higher and more recent, respectively. The application of different approaches has been useful to corroborate previous theoretical conceptual model proposed for the study area and to test the applicability of the used environmental tracer in dating brine groundwater and karst springs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Gilmarquez2020124263 Serial 213
Permanent link to this record