Benutzer-Werkzeuge

Webseiten-Werkzeuge


hydro:holtan

Holtan

Der Boden kann als Speicher aufgefasst werden, der eine Kapazität $C$ in [mm] zur Zeiteinheit [t] hat (#1). Die Kapazität $C$ verhält sich umgekehrt proportional zum Feuchteinhalt $\theta$:

$$\theta = 1/C$$

Die Infiltrationsrate ist eine Funktion der (Aufnahme-)Kapazität:

$$f(t) = a*C^n=a*(1/{\theta})^{n}$$

in mm/h. Dabei sind $a$ und $n$ zunächst empirische Konstanten. Wenn die Regenintensität größer ist als die Infiltrationsrate, so nimmt der Speicher um $-dC/dt = f$ ab und die Bodenfeuchte wächst mit $dw/dt = f$, nach Einsetzen ergibt sich:

$$-dC/dt = a*C^n$$

in mm/h. Setzt man n=1, so ergibt sich:

$$-dC/C = -a*dt$$

Diese Differentialgleichung kann gelöst werden. Zunächst werden beide Seiten nach $t$ integriert. Daraus ergibt sich:

$$ln{\lvert}f{\rvert} + C = -a*t + C$$

. Diese Gleichung wird nach $f$ aufgelöst:

$$f = a*C_{0}*exp^{-a*t}+f_{c}$$


#1
hydro/holtan.txt · Zuletzt geändert: 2018/08/12 23:37 von ckuells