toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author url  doi
openurl 
  Title Type Journal Article
  Year Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are meteoric in origin. A significant consequence of the meteoric origin of the Na-Cl-type water studied here is that the Br / Cl ratio, extensively used to assess the origin of salinity in fresh water, should be used with care in carbonate aquifers that are near the coast. Overall, δ34S and δ18O levels in dissolved SO4 suggest that water–rock interaction is responsible for the Na-Cl brackish composition of the water hosted by the Jurassic and Triassic aquifers of the Nurra, and this is consistent with the geology and lithological features of the study area. Evaporite dissolution may also explain the high Cl content, as halite was detected within the gypsum deposits. Finally, these Na-Cl brackish waters are undersaturated with respect to the more soluble salts, implying that in a climate evolving toward semi-arid conditions, the salinization process could intensify dramatically in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number THL @ christoph.kuells @ Serial 80  
Permanent link to this record
 

 
Author Han, D.; Currell, M.J. url  doi
openurl 
  Title Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence Type Journal Article
  Year 2018 Publication Hydrology and Earth System Sciences Abbreviated Journal  
  Volume 22 Issue 6 Pages 3473-3491  
  Keywords Isotopes, China, multiple salinization  
  Abstract Groundwater is an important water resource for agricultural irrigation and urban and industrial utilization in the coastal regions of northern China. In the past 5 decades, coastal groundwater salinization in the Yang–Dai river plain has become increasingly serious under the influence of anthropogenic activities and climatic change. It is pivotal for the scientific management of coastal water resources to accurately understand groundwater salinization processes and their causative factors. Hydrochemical (major ion and trace element) and stable isotopic (δ18O and δ2H) analysis of different water bodies (surface water, groundwater, geothermal water and seawater) were conducted to improve understanding of groundwater salinization processes in the plain's Quaternary aquifer. Saltwater intrusion due to intensive groundwater pumping is a major process, either by vertical infiltration along riverbeds which convey saline surface water inland, and/or direct subsurface lateral inflow. Trends in salinity with depth indicate that the former may be more important than previously assumed. The proportion of seawater in groundwater is estimated to have reached up to 13 % in shallow groundwater of a local well field. End-member mixing calculations also indicate that the geothermal water with high total dissolved solids (up to 10.6 g L−1) with depleted stable isotope compositions and elevated strontium concentrations (> 10 mg L−1) also mixes locally with water in the overlying Quaternary aquifers. This is particularly evident in samples with elevated Sr ∕ Cl ratios (> 0.005 mass ratio). Deterioration of groundwater quality by salinization is also clearly exacerbated by anthropogenic pollution. Nitrate contamination via intrusion of heavily polluted marine water is evident locally (e.g., in the Zaoyuan well field); however, more widespread nitrate contamination due to other local sources such as fertilizers and/or domestic wastewater is evident on the basis of NO3 ∕ Cl ratios. This study provides an example of how multiple geochemical indicators can delineate different salinization processes and guide future water management practices in a densely populated water-stressed coastal region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number THL @ christoph.kuells @ hess-22-3473-2018 Serial 81  
Permanent link to this record
 

 
Author Zhao, Q.; Su, X.; Kang, B.; Zhang, Y.; Wu, X.; Liu, M. url  doi
openurl 
  Title A hydrogeochemistry and multi-isotope (Sr, O, H, and C) study of groundwater salinity origin and hydrogeochemcial processes in the shallow confined aquifer of northern Yangtze River downstream coastal plain, China Type Journal Article
  Year 2017 Publication Applied Geochemistry Abbreviated Journal  
  Volume 86 Issue Pages 49-58  
  Keywords Coastal confined groundwater, Salinity, Hydrogeochemcial processes, Multiple environmental tracers  
  Abstract Economically developed coastal areas have a high water demand, and their groundwater resources can be threatened by salinization. Many methods and tracers have been used to discriminate the source of salinization because a single method does not yield reliable results. In this paper, the shallow confined coastal plain aquifer, north of the downstream Yangtze River in China, is used as a case study to investigate the origin of the salinity and the relevant geochemical processes for this aquifer. Multiple environmental tracers of major ions, minor ions (Br−, I−), and isotopes (18O, 2H, 13C, 87Sr, 3H, 14C) were used so as to provide reliable conclusions. The TDS distribution of the aquifer has an increasing trend, from below 500 mg/L in the inland areas to more than 20,000 mg/L around the southeast coastline. The water chemical type evolves from HCO3-Ca to Cl-Na as the TDS increases. The results suggest that the groundwater salinity is influenced by seawater intrusion. The seawater proportions in the groundwater samples range from 0.07% to 94.41% and show the same spatial distribution pattern as TDS. The 3H and 14C values show that the highest salinity was mainly caused by a seawater transgression around 6000a B.P. The aquifer is also affected by other hydrogeochemical processes: base exchange has enriched Ca2+ and depleted K+ and Na+, sulfate reduction has reduced the concentration of SO42− and enriched HCO3−, and iodine-rich organic matter decomposition has enriched the concentration of I−. The iodine enrichment also suggests paleo-seawater intrusion. In addition, the precipitation of carbonate minerals has decreased the concentration of Ca2+, Mg2+, and HCO3−, albeit to a limited extent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number THL @ christoph.kuells @ Zhao201749 Serial 182  
Permanent link to this record
 

 
Author Gaye, C.B. doi  openurl
  Title Isotope techniques for monitoring groundwater salinization Type Journal Article
  Year 2001 Publication Hydrogeology Journal Abbreviated Journal  
  Volume 9 Issue Pages 217-218  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number THL @ christoph.kuells @ article Serial 83  
Permanent link to this record
 

 
Author Khaska, M.; Salle], C. [L.G.L.; Lancelot, J.; team, A.S.T.E.R.; Mohamad, A.; Verdoux, P.; Noret, A.; Simler, R. url  openurl
  Title Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France) Type Journal Article
  Year 2013 Publication Applied Geochemistry Abbreviated Journal  
  Volume 37 Issue Pages 212-227  
  Keywords  
  Abstract In this study a typical coastal karst aquifer, developed in lower Cretaceous limestones, on the western Mediterranean seashore (La Clape massif, southern France) was investigated. A combination of geochemical and isotopic approaches was used to investigate the origin of salinity in the aquifer. Water samples were collected between 2009 and 2011. Three groundwater groups (A, B and C) were identified based on the hydrogeological setting and on the Cl− concentrations. Average and maximum Cl− concentrations in the recharge waters were calculated (ClRef. and ClRef.Max) to be 0.51 and 2.85mmol/L, respectively). Group A includes spring waters with Cl− concentrations that are within the same order of magnitude as the ClRef concentration. Group B includes groundwater with Cl− concentrations that range between the ClRef and ClRef.Max concentrations. Group C includes brackish groundwater with Cl− concentrations that are significantly greater than the ClRef.Max concentration. Overall, the chemistry of the La Clape groundwater evolves from dominantly Ca–HCO3 to NaCl type. On binary diagrams of the major ions vs. Cl, most of the La Clape waters plot along mixing lines. The mixing end-members include spring waters and a saline component (current seawater or fossil saline water). Based on the Br/Clmolar ratio, the hypothesis of halite dissolution from Triassic evaporites is rejected to explain the origin of salinity in the brackish groundwater. Groundwaters display 87Sr/86Sr ratios intermediate between those of the limestone aquifer matrix and current Mediterranean seawater. On a Sr mixing diagram, most of the La Clape waters plot on a mixing line. The end-members include the La Clape spring waters and saline waters, which are similar to the deep geothermal waters that were identified at the nearby Balaruc site. The 36Cl/Cl ratios of a few groundwater samples from group C are in agreement with the mixing hypothesis of local recharge water with deep saline water at secular equilibrium within a carbonate matrix. Finally, PHREEQC modelling was run based on calcite dissolution in an open system prior to mixing with the Balaruc type saline waters. Modelled data are consistent with the observed data that were obtained from the group C groundwater. Based on several tracers (i.e. concentrations and isotopic compositions of Cl and Sr), calculated ratios of deep saline water in the mixture are coherent and range from 3% to 16% and 0% to 3% for groundwater of groups C and B, respectively. With regard to the La Clape karst aquifer, the extension of a lithospheric fault in the study area may favour the rise of deep saline water. Such rises occur at the nearby geothermal Balaruc site along another lithospheric fault. At the regional scale, several coastal karst aquifers are located along the Gulf of Lion and occur in Mezosoic limestones of similar ages. The 87Sr/86Sr ratios of these aquifers tend toward values of 0.708557, which suggests a general mixing process of shallow karst waters with deep saline fossil waters. The occurrence of these fossil saline waters may be related to the introduction of seawater during and after the Flandrian transgression, when the highly karstified massifs invaded by seawater, formed islands and peninsulas along the Mediterranean coast.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number THL @ christoph.kuells @ Khaska2013212 Serial 84  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: