toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Cui, G.; Lu, Y.; Zheng, C.; Liu, Z.; Sai, J. url  openurl
  Title Relationship between soil salinization and groundwater hydration in Yaoba Oasis, Northwest China Type Journal Article
  Year 2019 Publication Water Abbreviated Journal  
  Volume 11 Issue 1 Pages 175  
  Keywords  
  Abstract Precipitation is scarce and evaporation is intense in desert areas. Groundwater is used as the main water source to develop agriculture in the oases. However, the effects of using groundwater on the ecological environment elicit widespread public concern. This study investigated the relationship between soil salinity and groundwater characteristics in Yaoba Oasis through in situ experiments. The relationship of the mineral content, pH, and main ion content of groundwater with soil salt was quantitatively evaluated through a gray relational analysis. Four main results were obtained. First, the fresh water area with low total dissolved solid (TDS) was usually HCO3− or SO42− type water, and salt water was mostly Cl− and SO42−. The spatial distribution of main ions in groundwater during winter irrigation in November was basically consistent with that during spring irrigation in June. However, the spatial distribution of TDS differed in the two seasons. Second, soil salinization in the study area was severe, and the salinization rate reached 72.7%. In this work, the spatial variability of soil salinization had a relatively large value, and the values in spring were greater than those in autumn. Third, the soil in the irrigated area had a high salt content, and the salt ion content of surface soil was higher than that of subsoil. A piper trilinear diagram revealed that Ca2+ and K+ + Na+ were the main cations. SO42−, Cl−, and HCO3− were the main anions, and salinization soil mainly contained SO42−. Fourth, the changes in soil salt and ion contents in the 0–10 cm soil layer were approximately similar to those of irrigation water quality, both of which showed an increasing trend. The correlation of surface soil salinity with the salinity of groundwater and its chemical components was high. In summary, this study identified the progress of irrigation water quality in soil salinization and provided a scientific basis for improving the oasis ecosystem, maintaining the healthy development of agriculture, managing oasis water resources, and policy development. Our

findings can serve as a reference for other, similar oasis research.
 
  Address  
  Corporate Author Thesis  
  Publisher Multidisciplinary Digital Publishing Institute Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Cui2019 Serial 46  
Permanent link to this record
 

 
Author (up) Darwish, T.; Atallah, T.; Francis, R.; Saab, C.; Jomaa, I.; Shaaban, A.; Sakka, H.; Zdruli, P. url  openurl
  Title Observations on soil and groundwater contamination with nitrate: A case study from Lebanon-East Mediterranean Type Journal Article
  Year 2011 Publication Agricultural Water Management Abbreviated Journal  
  Volume 99 Issue 1 Pages 74-84  
  Keywords  
  Abstract The impact of agricultural practices on soil–groundwater quality in the sub-humid Bekaa plain of Lebanon-East Mediterranean was monitored in four fields (F) between July 2007 and July 2009. These were occupied by continuous mint (F1), summer potato/wheat/potato (F2), lettuce/lettuce/potato/wheat/summer potato (F3) and table grapes (F4). N input calculated on a two-year basis, was in the following ascending order F4, F2, F3 and F1. Soil samples, analyzed down to 200 cm depth, showed high nitrate and chloride concentrations at the end of the 2007 and 2008 seasons. Soil chloride and nitrate peaks recorded in October 2007 and 2008 disappeared below 200 cm overwinter. The calculated N biannual discharge ranged from 130 (F4), to 516 (F2), to 778 (F1), to 879 kg ha−1 (F3). Groundwater quality was studied in 21 wells distributed along a sequence stretching from the Litani River to the eastern water dividing line. Based on the nitrate concentrations, the well located at the top of the water dividing line was the only one suitable for drinking purposes. Eight wells were mildly contaminated, therefore suitable for irrigation purposes except for sensitive crops. Twelve wells, positioned in the plain, showed a nitrate level exceeding 200 mg L−1. Protecting the soil and groundwater quality is a top priority to maintain the ecological and agricultural functions of water.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-3774 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Darwish2011 Serial 48  
Permanent link to this record
 

 
Author (up) Edwards, P.J.; Williard, K.W.J.; Schoonover, J.E. url  openurl
  Title Fundamentals of watershed hydrology Type Journal Article
  Year 2015 Publication Journal of contemporary water research & education Abbreviated Journal  
  Volume 154 Issue 1 Pages 3-20  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Online Library Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ edwards2015fundamentals Serial 101  
Permanent link to this record
 

 
Author (up) Greene, R.; Timms, W.; Rengasamy, P.; Arshad, M.; Cresswell, R. url  isbn
openurl 
  Title Soil and Aquifer Salinization: Toward an Integrated Approach for Salinity Management of Groundwater Type Book Chapter
  Year 2016 Publication Integrated Groundwater Management: Concepts, Approaches and Challenges Abbreviated Journal  
  Volume Issue Pages 377-412  
  Keywords  
  Abstract Degradation of the quality of groundwater due to salinization processes is one of the key issues limiting the global dependence on groundwater in aquifers. As the salinization of shallow aquifers is closely related to root-zone salinization, the two must be considered together. This chapter initially describes the physical and chemical processes causing salinization of the root-zone and shallow aquifers, highlighting the dynamics of these processes and how they can be influenced by irrigation and drainage practices, thus illustrating the connectivity between soil and groundwater salinization. The processes leading to aquifer salinization in both inland and coastal areas are discussed. The roles of extractive resource industries, such as mining and coal bed methane operations, in causing aquifer salinization are also outlined. Hydrogeochemical changes occurring during salinization of aquifers are examined with the aid of Piper and Mixing Diagrams. The chapter then illustrates the extent of the problem of groundwater salinization as influenced by management and policy using two case studies. The first is representative of a developing country and explores management of salt-affected soils in the Indus Valley, Pakistan, while the second looks at a developed country, and illustrates how through monitoring we can deduce causes of shallow aquifer salinity in the Namoi Catchment of NSW, Australia. Finally, there is a section on integration and conclusions where we illustrate how management to mitigate salinization needs to be integrated with policy to diminish the threat to productivity that occurs with groundwater degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Cham Editor Jakeman, A.J.; Barreteau, O.; Hunt, R.J.; Rinaudo, J.-D.; Ross, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-23576-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Greene2016 Serial 49  
Permanent link to this record
 

 
Author (up) Herckenrath*, D.; Langevin, C.D.; Doherty, J. doi  openurl
  Title Predictive uncertainty analysis of a saltwater intrusion modelusing null‐space Monte Carlo Type Journal Article
  Year 2011 Publication Water Resour. Res. Abbreviated Journal  
  Volume 47 Issue Pages 05504  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ Herckenrath2011 Serial 150  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: