toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrot, C.; Flehoc, C.; Pezard, P.; Lofi, J.; Dörfliger, N. url  doi
openurl 
  Title Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France) Type Journal Article
  Year 2016 Publication Science of The Total Environment Abbreviated Journal  
  Volume (down) 566-567 Issue Pages 398-415  
  Keywords Groundwater salinization, Coastal aquifer, Roussillon Basin, Isotopes, Westbay System, Barcarès and Canet sites  
  Abstract The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000μS·cm−1. The δ2H–δ18O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using 3H, 14C and CFCs/SF6. S(SO4) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers 87Sr/86Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015), we discuss the possible future evolution of this aquifer system under global change, as well as the potential management strategies needed to preserve quantitatively and qualitatively this water resource.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Peteletgiraud2016398 Serial 181  
Permanent link to this record
 

 
Author Kurunc, A.; Ersahin, S.; Sonmez, N.K.; Kaman, H.; Uz, I.; Uz, B.Y.; Aslan, G.E. url  doi
openurl 
  Title Seasonal changes of spatial variation of some groundwater quality variables in a large irrigated coastal Mediterranean region of Turkey Type Journal Article
  Year 2016 Publication Science of the Total Environment Abbreviated Journal  
  Volume (down) 554 Issue Pages 53-63  
  Keywords  
  Abstract Soil and groundwater degradations have taken considerable attention, recently. We studied spatial and temporal variations of groundwater table depth and contours, and groundwater pH, electrical conductivity (EC), and nitrate (NO3) content in a large irrigated area in Western Mediterranean region of Turkey. These variables were

monitored during 2009 and 2010 in previously constructed 220 monitoring wells. We analyzed the data by geostatistical techniques and GIS. Spatial variation of groundwater table depth (GTD) and groundwater table contours (GTC) remained similar across the four sampling campaigns. The values for groundwater NO3 content, EC, and pH values ranged from 0.01 to 454.1 g L−1 , 0.06 to 46.0 dS m−1 and 6.53–9.91, respectively. Greatest

geostatistical range (16,964 m) occurred for GTC and minimum (960 m) for groundwater EC. Groundwater NO3 concentrations varied both spatially and temporally. Temporal changes in spatial pattern of NO3 indicated that land use and farming practices influenced spatial and temporal variation of groundwater NO3. Several hot spots occurred for groundwater NO3 content and EC. These localities should be monitored more frequently and

land management practices should be adjusted to avoid soil and groundwater degradation. The results may have important implications for areas with similar soil, land use, and climate conditions across the Mediterranean region.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Kurunc2016 Serial 45  
Permanent link to this record
 

 
Author Llopis-Albert, C.; Merigó, J.M.; Xu, Y. doi  openurl
  Title A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty Type Journal Article
  Year 2016 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 540 Issue Pages 774-783  
  Keywords  
  Abstract This paper presents an alternative approach to deal with seawater intrusion problems, that overcomes some of the limitations of previous works, by coupling the well-known SWI2 package for MODFLOW with a stochastic inverse model named GC method. On the one hand, the SWI2 allows a vertically integrated variable-density groundwater flow and seawater intrusion in coastal multi-aquifer systems, and a reduction in number of required model cells and the elimination of the need to solve the advective-dispersive transport equation, which leads to substantial model run-time savings. On the other hand, the GC method allows dealing with groundwater parameter uncertainty by constraining stochastic simulations to flow and mass transport data (i.e., hydraulic conductivity, freshwater heads, saltwater concentrations and travel times) and also to secondary information obtained from expert judgment or geophysical surveys, thus reducing uncertainty and increasing reliability in meeting the environmental standards. The methodology has been successfully applied to a transient movement of the freshwater-seawater interface in response to changing freshwater inflow in a two-aquifer coastal aquifer system, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques. The approach also allows partially overcoming the neglected diffusion and dispersion processes after the conditioning process since the uncertainty is reduced and results are closer to available data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Llopis-Albert2016 Serial 30  
Permanent link to this record
 

 
Author Russak, A.; Sivan, O.; Yechieli, Y. url  openurl
  Title Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers Type Journal Article
  Year 2016 Publication Chemical Geology Abbreviated Journal  
  Volume (down) 441 Issue Pages 35-46  
  Keywords Seawater intrusion, Fresh-saline water interface, Trace metal, Manganese, Lithium, Boron  
  Abstract The current global intrusion of seawater into coastal aquifers causes salinization of groundwater and thus significant degradation of its quality. This study quantified the effect of seawater intrusion and freshening events in coastal aquifers on trace elements (Li, B, Mn and Ba) across the fresh-saline water interface (FSI) and their possible use as indicators for these events. This was done by combining field data and column experiments simulating these events. The experiments enabled quantification of the processes affecting the trace element composition and examination of whether salinization and freshening events are geochemically reversible, which has been seldom investigated. The dominant process affecting trace element composition during salinization and freshening is ion exchange. The results of the experiments show that the concentrations of major cations and Li+ were reversible during salinization and freshening, whereas B, Mn2+ and Ba2+ were not. During salinization, Li+ and B were depleted due to sorption by 10 and 100μmol·L−1, respectively, to about half of their expected conservative concentrations. The relative depletion of Li+ increased with distance from the shore, representing the propagation of salinization. Ba2+ and Mn2+ were desorbed from the sediment during salinization and enriched by tenfold in the aqueous phase compared to their concentration in seawater ( 0.1 μeq·L−1). During freshening both were depleted by almost tenfold compared to their concentration in fresh groundwater ( 0.7 μeq·L−1). The depletion of Mn2+ is a sensitive marker for freshening because Mn2+ has a strong affinity to the solid phase. Moreover, this study shows that both Mn2+ and Ba2+ can be used as sensitive hydrogeochemical tools to distinguish between salinization and freshening events in the FSI zone in coastal aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language en Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Russak201635 Serial 197  
Permanent link to this record
 

 
Author Lu, C.; Xin, P.; Kong, J.; Li, L.; Luo, J. url  doi
openurl 
  Title Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers Type Journal Article
  Year 2016 Publication Water Resources Research Abbreviated Journal  
  Volume (down) 52 Issue 9 Pages 6989-7004  
  Keywords seawater intrusion, sloping coastal aquifer, analytical solution  
  Abstract Abstract Sloping coastal aquifers in reality are ubiquitous and well documented. Steady state sharp-interface analytical solutions for describing seawater intrusion in sloping confined and unconfined coastal aquifers are developed based on the Dupuit-Forchheimer approximation. Specifically, analytical solutions based on the constant-flux inland boundary condition are derived by solving the discharge equation for the interface zone with the continuity conditions of the head and flux applied at the interface between the freshwater zone and the interface zone. Analytical solutions for the constant-head inland boundary are then obtained by developing the relationship between the inland freshwater flux and hydraulic head and combining this relationship with the solutions of the constant-flux inland boundary. It is found that for the constant-flux inland boundary, the shape of the saltwater interface is independent of the geometry of the bottom confining layer for both aquifer types, despite that the geometry of the bottom confining layer determines the location of the interface tip. This is attributed to that the hydraulic head at the interface is identical to that of the coastal boundary, so the shape of the bed below the interface is irrelevant to the interface position. Moreover, developed analytical solutions with an empirical factor on the density factor are in good agreement with the results of variable-density flow numerical modeling. Analytical solutions developed in this study provide a powerful tool for assessment of seawater intrusion in sloping coastal aquifers as well as in coastal aquifers with a known freshwater flux but an arbitrary geometry of the bottom confining layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Lu.etal.2016 Serial 15  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: