toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Post, V.E.A.; Vassolo, S.I.; Tiberghien, C.; Baranyikwa, D.; Miburo, D. url  openurl
  Title Weathering and evaporation controls on dissolved uranium concentrations in groundwater – A case study from northern Burundi Type Journal Article
  Year 2017 Publication Science of The Total Environment Abbreviated Journal  
  Volume 607-608 Issue Pages 281-293  
  Keywords Geochemical modelling, Hydrochemistry, Lake Tshohoha South, Public health, Radionuclides, Water supply  
  Abstract The potential use of groundwater for potable water supply can be severely compromised by natural contaminants such as uranium. The environmental mobility of uranium depends on a suite of factors including aquifer lithology, redox conditions, complexing agents, and hydrological processes. Uranium concentrations of up to 734μg/L are found in groundwater in northern Burundi, and the objective of the present study was to identify the causes for these elevated concentrations. Based on a comprehensive data set of groundwater chemistry, geology, and hydrological measurements, it was found that the highest dissolved uranium concentrations in groundwater occur near the shores of Lake Tshohoha South and other smaller lakes nearby. A model is proposed in which weathering and evapotranspiration during groundwater recharge, flow and discharge exert the dominant controls on the groundwater chemical composition. Results of PHREEQC simulations quantitatively confirm this conceptual model and show that uranium mobilization followed by evapo-concentration is the most likely explanation for the high dissolved uranium concentrations observed. The uranium source is the granitic sand, which was found to have a mean elemental uranium content of 14ppm, but the exact mobilization process could not be established. Uranium concentrations may further be controlled by adsorption, especially where calcium-uranyl‑carbonate complexes are present. Water and uranium mass balance calculations for Lake Tshohoha South are consistent with the inferred fluxes and show that high‑uranium groundwater represents only a minor fraction of the overall water input to the lake. These findings highlight that the evaporation effects that cause radionuclide concentrations to rise to harmful levels in groundwater discharge areas are not only confined to arid regions, and that this should be considered when selecting suitable locations for water supply wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ post_weathering_2017 Serial 132  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: