|   | 
Details
   web
Records
Author (up) Han, D.; Currell, M.J.
Title Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence Type Journal Article
Year 2018 Publication Hydrology and Earth System Sciences Abbreviated Journal
Volume 22 Issue 6 Pages 3473-3491
Keywords Isotopes, China, multiple salinization
Abstract Groundwater is an important water resource for agricultural irrigation and urban and industrial utilization in the coastal regions of northern China. In the past 5 decades, coastal groundwater salinization in the Yang–Dai river plain has become increasingly serious under the influence of anthropogenic activities and climatic change. It is pivotal for the scientific management of coastal water resources to accurately understand groundwater salinization processes and their causative factors. Hydrochemical (major ion and trace element) and stable isotopic (δ18O and δ2H) analysis of different water bodies (surface water, groundwater, geothermal water and seawater) were conducted to improve understanding of groundwater salinization processes in the plain's Quaternary aquifer. Saltwater intrusion due to intensive groundwater pumping is a major process, either by vertical infiltration along riverbeds which convey saline surface water inland, and/or direct subsurface lateral inflow. Trends in salinity with depth indicate that the former may be more important than previously assumed. The proportion of seawater in groundwater is estimated to have reached up to 13 % in shallow groundwater of a local well field. End-member mixing calculations also indicate that the geothermal water with high total dissolved solids (up to 10.6 g L−1) with depleted stable isotope compositions and elevated strontium concentrations (> 10 mg L−1) also mixes locally with water in the overlying Quaternary aquifers. This is particularly evident in samples with elevated Sr ∕ Cl ratios (> 0.005 mass ratio). Deterioration of groundwater quality by salinization is also clearly exacerbated by anthropogenic pollution. Nitrate contamination via intrusion of heavily polluted marine water is evident locally (e.g., in the Zaoyuan well field); however, more widespread nitrate contamination due to other local sources such as fertilizers and/or domestic wastewater is evident on the basis of NO3 ∕ Cl ratios. This study provides an example of how multiple geochemical indicators can delineate different salinization processes and guide future water management practices in a densely populated water-stressed coastal region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hess-22-3473-2018 Serial 81
Permanent link to this record
 

 
Author (up) Han, D.M.; Song, X.F.; Currell, M.J.; Yang, J.L.; Xiao, G.Q.
Title Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China Type Journal Article
Year 2014 Publication Journal of Hydrology Abbreviated Journal
Volume 508 Issue Pages 12-27
Keywords Laizhou Bay, Coastal aquifers, Groundwater hydrochemistry, Stable isotopes, Saltwater intrusion
Abstract Summary A hydrochemical-isotopic investigation of the Laizhou Bay Quaternary aquifer in north China provides new insights into the hydrodynamic and geochemical relationships between freshwater, seawater and brine at different depths in coastal sediments. Saltwater intrusion mainly occurs due to two cones of depression caused by concentrated exploitation of fresh groundwater in the south, and brine water for salt production in the north. Groundwater is characterized by hydrochemical zonation of water types (ranging from Ca–HCO3 to Na–Cl) from south to north, controlled by migration and mixing of saline water bodies with the regional groundwater. The strong adherence of the majority of ion/Cl ratios to mixing lines between freshwater and saline water end-members (brine or seawater) indicates the importance of mixing under natural and/or anthropogenic influences. Examination of the groundwater stable isotope δ18O and δ2H values (between −9.5‰ and −3.0‰ and −75‰ and −40‰, respectively) and chloride contents (∼2 to 1000meq/L) of the groundwater indicate that the saline end-member is brine rather than seawater, and most groundwater samples plot on mixing trajectories between fresh groundwater (δ18O of between −6.0‰ and −9.0‰; Cl<5meq/L) and sampled brines (δ18O of approximately −3.0‰ and Cl>1000meq/L). Locally elevated Na/Cl ratios likely result from ion exchange in areas of long-term freshening. The brines, with radiocarbon activities of ∼30 to 60 pMC likely formed during the Holocene as a result of the sequence of transgression-regression and evaporation; while deep, fresh groundwater with depleted stable isotopic values (δ18O=−9.7‰ and δ2H=−71‰) and low radiocarbon activity (<20 pMC) was probably recharged during a cooler period in the late Pleistocene, as is common throughout northern China. An increase in the salinity and tritium concentration in some shallow groundwater sampled in the 1990s and re-sampled here indicates that intensive brine extraction has locally resulted in rapid mixing of young, fresh groundwater and saline brine. The δ18O and δ2H values of brines (∼−3.0‰ and −35‰) are much lower than that of modern seawater, which could be explained by 1) mixing of original (δ18O enriched) brine that was more saline than presently observed, with fresh groundwater recharged by precipitation and/or 2) dilution of the palaeo-seawater with continental runoff prior to and/or during brine formation. The first mechanism is supported by relatively high Br/Cl molar ratios (1.7×10−3–2.5×10−3) in brine water compared with ∼1.5×10−3 in seawater, which could indicate that the brines originally reached halite saturation and were subsequently diluted with fresher groundwater over the long-term. Decreasing 14C activities with increasing sampling depth and increasing proximity to the coastline indicate that the south coastal aquifer in Laizhou Bay is dominated by regional lateral flow, on millennial timescales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Han201412 Serial 174
Permanent link to this record