toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Darwish, T.; Atallah, T.; Francis, R.; Saab, C.; Jomaa, I.; Shaaban, A.; Sakka, H.; Zdruli, P. url  openurl
  Title Observations on soil and groundwater contamination with nitrate: A case study from Lebanon-East Mediterranean Type Journal Article
  Year 2011 Publication Agricultural Water Management Abbreviated Journal  
  Volume 99 Issue 1 Pages 74-84  
  Keywords  
  Abstract The impact of agricultural practices on soil–groundwater quality in the sub-humid Bekaa plain of Lebanon-East Mediterranean was monitored in four fields (F) between July 2007 and July 2009. These were occupied by continuous mint (F1), summer potato/wheat/potato (F2), lettuce/lettuce/potato/wheat/summer potato (F3) and table grapes (F4). N input calculated on a two-year basis, was in the following ascending order F4, F2, F3 and F1. Soil samples, analyzed down to 200 cm depth, showed high nitrate and chloride concentrations at the end of the 2007 and 2008 seasons. Soil chloride and nitrate peaks recorded in October 2007 and 2008 disappeared below 200 cm overwinter. The calculated N biannual discharge ranged from 130 (F4), to 516 (F2), to 778 (F1), to 879 kg ha−1 (F3). Groundwater quality was studied in 21 wells distributed along a sequence stretching from the Litani River to the eastern water dividing line. Based on the nitrate concentrations, the well located at the top of the water dividing line was the only one suitable for drinking purposes. Eight wells were mildly contaminated, therefore suitable for irrigation purposes except for sensitive crops. Twelve wells, positioned in the plain, showed a nitrate level exceeding 200 mg L−1. Protecting the soil and groundwater quality is a top priority to maintain the ecological and agricultural functions of water.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0378-3774 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Darwish2011 Serial 48  
Permanent link to this record
 

 
Author Greene, R.; Timms, W.; Rengasamy, P.; Arshad, M.; Cresswell, R. url  isbn
openurl 
  Title Soil and Aquifer Salinization: Toward an Integrated Approach for Salinity Management of Groundwater Type Book Chapter
  Year 2016 Publication Integrated Groundwater Management: Concepts, Approaches and Challenges Abbreviated Journal  
  Volume Issue Pages 377-412  
  Keywords  
  Abstract Degradation of the quality of groundwater due to salinization processes is one of the key issues limiting the global dependence on groundwater in aquifers. As the salinization of shallow aquifers is closely related to root-zone salinization, the two must be considered together. This chapter initially describes the physical and chemical processes causing salinization of the root-zone and shallow aquifers, highlighting the dynamics of these processes and how they can be influenced by irrigation and drainage practices, thus illustrating the connectivity between soil and groundwater salinization. The processes leading to aquifer salinization in both inland and coastal areas are discussed. The roles of extractive resource industries, such as mining and coal bed methane operations, in causing aquifer salinization are also outlined. Hydrogeochemical changes occurring during salinization of aquifers are examined with the aid of Piper and Mixing Diagrams. The chapter then illustrates the extent of the problem of groundwater salinization as influenced by management and policy using two case studies. The first is representative of a developing country and explores management of salt-affected soils in the Indus Valley, Pakistan, while the second looks at a developed country, and illustrates how through monitoring we can deduce causes of shallow aquifer salinity in the Namoi Catchment of NSW, Australia. Finally, there is a section on integration and conclusions where we illustrate how management to mitigate salinization needs to be integrated with policy to diminish the threat to productivity that occurs with groundwater degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Cham Editor Jakeman, A.J.; Barreteau, O.; Hunt, R.J.; Rinaudo, J.-D.; Ross, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN 978-3-319-23576-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Greene2016 Serial 49  
Permanent link to this record
 

 
Author Ali, R.; Salama, R.; Pollock, D.; Bates, L. openurl 
  Title Geochemical interactions between groundwater and soil, groundwater recycling and evaporation in the ORIA Type Book Whole
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher CSIRO Land and Water Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ Ali2002 Serial 50  
Permanent link to this record
 

 
Author Jesús Carrera, Juan J. Hidalgo, Luit J. Slooten, Enric Vázquez-Suñé url  doi
openurl 
  Title Computational and conceptual issues in the calibration of seawater intrusion models Type Journal Article
  Year 2010 Publication Hydrogeology Journal Abbreviated Journal  
  Volume 18 Issue Pages 131-145  
  Keywords Coastal aquifers; Inverse modelling; Numerical modeling  
  Abstract The inverse problem of seawater intrusion(SWI) is reviewed. It represents a challenge because of both conceptual and computational difficulties and because coastal aquifer models display many singularities:(1) head measurements need to be complemented with density information; (2) salinity concentration data are

very sensitive to flow within the borehole. Data problems can be reduced by incorporating the measurement process within model calibration; (3) SWI models are extremely sensitive to aquifer bottom topography; (4) the initial conditions may be far from steady state and depend on the location and type of sea-aquifer connection. Problems with aquifer geometry and initial conditions can be addressed by parameterization, which allows for modification during inversion. The four sets of difficulties can be partly overcome by using tidal response and electrical conductivity data, which are highly informative and

provide extensive coverage. Still, SWI inversion is extremely demanding from a computation point of view. Computational improvements are discussed.
 
  Address J. Carrera : J. J. Hidalgo ()) : L. J. Slooten : E. Vázquez-Suñé, Spain e-mail: juan.hidalgo@upc.edu  
  Corporate Author Institute of Environmental Ass Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Jordi Girona 18, 08034 Barcelona, e-mail: juan.hidalgo@upc.edu Thesis  
  Publisher IAH Place of Publication Editor Springer  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1431- 2174 (online: 1435-0157) ISBN Medium  
  Area 'Hydrogeology'; 'groundwater modelling' Expedition Conference  
  Notes Approved yes  
  Call Number MGRE @ redha.menani @ Serial 51  
Permanent link to this record
 

 
Author Siarkos, I.; Latinopoulos, P. url  doi
openurl 
  Title Modeling seawater intrusion in overexploited aquifers in the absence of sufficient data: application to the aquifer of Nea Moudania, northern Greece Type Journal Article
  Year 2016 Publication Hydrogeology Journal Abbreviated Journal Hydrogeology J.  
  Volume 24 Issue Pages 2123–2141  
  Keywords Groundwater flow, Seawater intrusion, Numerical modeling, Greece, Sensitivity analysis  
  Abstract In many coastal areas, overexploitation of groundwater resources has led both to the quantitative degradation of local aquifers and the deterioration of groundwater quality due to seawater intrusion. To investigate the behavior of coastal aquifers under these conditions, numerical modeling is usually implemented; however, the proper implementation of numerical models requires a large amount of data, which are often not available due to the time-consuming and costly process of obtaining them. In the present study, the investigation of the behavior of coastal aquifers under the lack of adequate data is

attempted by developing a methodological framework consisting of a series of numerical simulations: a steady-state, a false-transient and a transient simulation. The sequence and the connection between these simulations constitute the backbone of the whole procedure aimed at adjusting the various

model parameters, as well as obtaining the initial conditions for the transient simulation. The validity of the proposed methodology is tested through evaluation of the model calibration procedure and the estimation of the simulation errors (mean error, mean absolute error, root mean square error, mean relative error) using the case of Nea Moudania basin, northern Greece. Furthermore, a sensitivity analysis is performed in order to minimize the error estimates and thus to maximize the reliability of the models. The results of the whole procedure affirm the proper implementation of the developed methodology under specific conditions and assumptions due to the lack of sufficient data, while they give a clear picture of the aquifer’s quantitative and qualitative status.
 
  Address Ilias Siarkos: isiarkos@civil.auth.gr; Pericles Latinopoulos latin@civil.auth.gr  
  Corporate Author School of Civil Engineering, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece Thesis  
  Publisher IAH Place of Publication Editor Springer  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1431-2174 ISBN Medium  
  Area Hydrogeology; groundwater modelling, sea water intrusion Expedition Conference  
  Notes Approved yes  
  Call Number MGRE @ redha.menani @ Serial 52  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: