toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Magaritz, M.; Nadler, A.; Kafri, U.; Arad, A. doi  openurl
  Title Hydrogeochemistry of continental brackish waters in the southern Coastal Plain, Israel Type (up) Journal Article
  Year 1984 Publication Chemical Geology Abbreviated Journal  
  Volume 42 Issue 1 Pages 159-176  
  Keywords  
  Abstract The southern Coastal Plain in Israel incorportates a transitional fringe of the desert in which three different chemical types of groundwater are found: (1) near-surface waters from springs along the Besor River course: (2) shallow- to moderate-depth waters from the slightly westward-dipping Pleistocene coastal aquifer (this aquifer, which consists of sandstone layers of the Kurkar Group, is recharged in the Coastal Plain); and (3) deep waters of the westward-dipping Upper Cretaceous Judea Group carbonates, which are recharged in the mountains in the east. A thick aquiclude of Upper Cretaceous-Tertiary rocks separates the Judea Group aquifer from the overlying coastal aquifer in the southern Coastal Plain. Isotopically light oxygen and depleted deuterium characterize the Judea Group waters, as expected from high-altitude recharge. The isotopic composition of the Coastal Plain waters is variable, but for the most part enriched in 18O and D. Within the southern Coastal Plain aquifer a southern subgroup comprises waters more depleted in heavy isotopes than those of either the northern or eastern subgroups. The Besor waters are isotopically similar to the Judea Group waters, reflecting their origin in the mountain region, and flow through the surficial river gravels and sands. It is suggested that leakage of the Besor waters into the underlying southern Coastal Plain aquifer results in mixing of the two water types. The most prominent chemical feature characterizing the groundwater of the southern Coastal Plain is Na+Cl− \textgreater 1. This Na+Cl− ratio can be maintained only by a continuous input from a non-marine source of Na. The most plausible source of this Na is the dissolution of feldspar derived from the windblown loess deposits which cover the area and/or leaching of trona minerals found in the unsaturated zone, combined with base-exchange processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Magaritz1984 Serial 31  
Permanent link to this record
 

 
Author Moral, F.; Cruz-Sanjulián, J.J.; Olías, M. url  doi
openurl 
  Title Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain) Type (up) Journal Article
  Year 2008 Publication Journal of Hydrology Abbreviated Journal  
  Volume 360 Issue 1 Pages 281-296  
  Keywords  
  Abstract Sierra de Segura (Betic Cordillera), with a total area of over 3000km2, is the source of the two principal rivers in southern Spain, the Guadalquivir and the Segura. Due to the orographic effect of these mountains, precipitations are considerably more abundant than in nearby lowland areas, where the climate is semi-arid. Sierra de Segura is constituted of Mesozoic and Cenozoic sedimentary rocks, among which there are thick limestone–dolomitic formations which have given rise to extensive outcrops of permeable materials. In geomorphological terms, there is a large plateau intensively karstified that constitutes the main recharge area. Discharge takes place via a large number of springs, of which the 50 most important add up to a mean spring flow of about 13,500l/s. The active geochemical processes in aquifers of Sierra de Segura, with their corresponding time sequence, are: dissolution of CO2, dissolution of calcite, incongruent dissolution of dolomite, dedolomitization, exsolution of CO2, and precipitation of calcite. More evolved water has higher temperature, magnesium content and Mg/Ca ratio; therefore, these parameters can be utilised as indicators of the degree of hydrochemical evolution. In addition, a good correlation between water temperature and magnesium concentration (or Mg/Ca ratio) indicates that an increase in temperature accelerates the kinetics of the dissolution of dolomite. Finally, the distribution of the temperatures in the vadose zone, determined by atmospheric thermal gradient, implies an apparent stratification of the predominant hydrochemical processes and of the groundwater physical and chemical characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Moral2008 Serial 32  
Permanent link to this record
 

 
Author Nadler, A.; Magaritz, M.; Mazor, E. doi  openurl
  Title Chemical reactions of sea water with rocks and freshwater: Experimental and field observations on brackish waters in Israel Type (up) Journal Article
  Year 1980 Publication Geochimica et Cosmochimica Acta Abbreviated Journal  
  Volume 44 Issue 6 Pages 879-886  
  Keywords  
  Abstract Four major processes are observed to take place in the coastal aquifer of Israel, detectable even in the short times of water contact with the carbonate-containing host rocks. Three are chemical reactions, Ca2+-Mg2+ exchange, Na+-Ca2+ or Na+-Mg2+ base exchange, SO2−4 reduction and the fourth is dilution by freshwater. These reactions and their effects on the chemical composition of the waters were demonstrated experimentally. The range of chemical changes observed in the laboratory experiments overlap the range of the studied natural waters. This indicates that simulation of geologically long-term rock-water interaction could be achieved in laboratory experiments even at low temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-7037 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Nadler1980 Serial 33  
Permanent link to this record
 

 
Author Nogueira, G.; Stigter, T.Y.; Zhou, Y.; Mussa, F.; Juizo, D. doi  openurl
  Title Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique Type (up) Journal Article
  Year 2019 Publication Science of The Total Environment Abbreviated Journal  
  Volume 661 Issue Pages 723-736  
  Keywords  
  Abstract In this study hydrochemical, isotopic and multivariate statistical tools are combined with a recharge analysis and existing geophysical data to improve understanding of major factors controlling freshwater occurrence and the origins of high salinities in the multi-layered coastal aquifer system of the Great Maputo area in Mozambique. Access to freshwater in this semi-arid area is limited by an inefficient public supply network, scarce surface waters, long droughts and an increasing population growth. Groundwater has a large potential to enhance water security, but its exploitation is threatened by both coastal and inland salinization mechanisms that are poorly understood. A GIS approach is utilized to classify potential recharge zones based on hydrogeological properties and land use/cover, whereas potential recharge rates are estimated through a root zone water balance method. In combination with water stable isotope data results reveal that extreme rainfall events provide the most relevant contributions to recharge, and interception and evaporation play an important role in the low recharge areas. Hierarchical clustering of hydrochemical and isotopic data allows the classification of six water groups, varying from fresh to brackish/salt waters. Corresponding scatter plots and PHREEQC modelling show evaporation and mixing with seawater (up to 5%) as major processes affecting salinity in the area. The co-occurrence of high alkalinity and Cl concentrations, in combination with piezometric and geo-electrical data, suggests that: 1) inland brackish/salt groundwater is caused by mixing with seawater trapped within clay layers; and 2) brackish/salt surface waters result from seepage of brackish groundwater into rivers and wetlands, followed by evaporation, hence increasing salinity and δ18O values. Mixing with small fractions of trapped seawater as main salinity source, rather than halite dissolution, is further corroborated by Br/Cl ratios of brackish/salt water samples near the ocean ratio. Cation exchange upon salinization is mainly observed in the semi-confined aquifer, while freshening takes place in the phreatic aquifer, particularly in areas presenting high recharge rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Nogueira2019 Serial 34  
Permanent link to this record
 

 
Author Pacheco, F.A.L.; Szocs, T. doi  openurl
  Title “Dedolomitization reactions” driven by anthropogenic activity on loessy sediments, SW Hungary Type (up) Journal Article
  Year 2006 Publication Applied Geochemistry Abbreviated Journal  
  Volume 21 Issue 4 Pages 614-631  
  Keywords  
  Abstract In the Szigetvár area, SW Hungary, shallow groundwaters draining upper Pleistocene loess and Holocene sediments are considerably contaminated by domestic effluents and leachates of farmland fertilizers. The loess contains calcite and dolomite, but gypsum was not recognized in these sediments. The anthropogenic inputs contain significant amounts of Ca and SO4. The Ca from these anthropogenic inputs is promoting calcite growth, with concomitant consumption of carbonate alkalinity, undersaturation of the system with respect to dolomite, and dolomite dissolution; in brief, is driving “dedolomitization reactions”. Geochemical arguments supporting the occurrence of “dedolomitization reactions” in the area are provided by the results of mass balance and thermodynamic analyses. The mass balances predicted the weather sequence dolomite\textgreatercalcite\textgreaterplagioclase\textgreaterK-feldspar, at odds with widely accepted sequences of weatherability where calcite is the first mineral in the weathering sequence. The exchange between calcite and dolomite can be a side effect of “dedolomitization reactions” because they cause precipitation of calcite. The thermodynamic prerequisites for “dedolomitization reactions” are satisfied by most local groundwaters (70%) since they are supersaturated (or in equilibrium) with respect to calcite, undersaturated (or in equilibrium) with respect to dolomite, and undersaturated with respect to gypsum. The Ca vs. SO4 and Mg vs. SO4 trends are also compatible with homologous trends resulting from “dedolomitization reactions”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Pacheco2006 Serial 35  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: