toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Magaritz, M.; Nadler, A.; Kafri, U.; Arad, A. doi  openurl
  Title Hydrogeochemistry of continental brackish waters in the southern Coastal Plain, Israel Type Journal Article
  Year 1984 Publication Chemical Geology Abbreviated Journal  
  Volume 42 Issue 1 Pages 159-176  
  Keywords  
  Abstract The southern Coastal Plain in Israel incorportates a transitional fringe of the desert in which three different chemical types of groundwater are found: (1) near-surface waters from springs along the Besor River course: (2) shallow- to moderate-depth waters from the slightly westward-dipping Pleistocene coastal aquifer (this aquifer, which consists of sandstone layers of the Kurkar Group, is recharged in the Coastal Plain); and (3) deep waters of the westward-dipping Upper Cretaceous Judea Group carbonates, which are recharged in the mountains in the east. A thick aquiclude of Upper Cretaceous-Tertiary rocks separates the Judea Group aquifer from the overlying coastal aquifer in the southern Coastal Plain. Isotopically light oxygen and depleted deuterium characterize the Judea Group waters, as expected from high-altitude recharge. The isotopic composition of the Coastal Plain waters is variable, but for the most part enriched in 18O and D. Within the southern Coastal Plain aquifer a southern subgroup comprises waters more depleted in heavy isotopes than those of either the northern or eastern subgroups. The Besor waters are isotopically similar to the Judea Group waters, reflecting their origin in the mountain region, and flow through the surficial river gravels and sands. It is suggested that leakage of the Besor waters into the underlying southern Coastal Plain aquifer results in mixing of the two water types. The most prominent chemical feature characterizing the groundwater of the southern Coastal Plain is Na+Cl− \textgreater 1. This Na+Cl− ratio can be maintained only by a continuous input from a non-marine source of Na. The most plausible source of this Na is the dissolution of feldspar derived from the windblown loess deposits which cover the area and/or leaching of trona minerals found in the unsaturated zone, combined with base-exchange processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Magaritz1984 Serial 31  
Permanent link to this record
 

 
Author (up) Pearce, C.R.; Parkinson, I.J.; Gaillardet, J.; Chetelat, B.; Burton, K.W. url  openurl
  Title Characterising the stable (δ88/86Sr) and radiogenic (87Sr/86Sr) isotopic composition of strontium in rainwater Type Journal Article
  Year 2015 Publication Chemical Geology Abbreviated Journal  
  Volume 409 Issue Pages 54-60  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ pearce2015characterising Serial 96  
Permanent link to this record
 

 
Author (up) Russak, A.; Sivan, O.; Yechieli, Y. url  openurl
  Title Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers Type Journal Article
  Year 2016 Publication Chemical Geology Abbreviated Journal  
  Volume 441 Issue Pages 35-46  
  Keywords Seawater intrusion, Fresh-saline water interface, Trace metal, Manganese, Lithium, Boron  
  Abstract The current global intrusion of seawater into coastal aquifers causes salinization of groundwater and thus significant degradation of its quality. This study quantified the effect of seawater intrusion and freshening events in coastal aquifers on trace elements (Li, B, Mn and Ba) across the fresh-saline water interface (FSI) and their possible use as indicators for these events. This was done by combining field data and column experiments simulating these events. The experiments enabled quantification of the processes affecting the trace element composition and examination of whether salinization and freshening events are geochemically reversible, which has been seldom investigated. The dominant process affecting trace element composition during salinization and freshening is ion exchange. The results of the experiments show that the concentrations of major cations and Li+ were reversible during salinization and freshening, whereas B, Mn2+ and Ba2+ were not. During salinization, Li+ and B were depleted due to sorption by 10 and 100μmol·L−1, respectively, to about half of their expected conservative concentrations. The relative depletion of Li+ increased with distance from the shore, representing the propagation of salinization. Ba2+ and Mn2+ were desorbed from the sediment during salinization and enriched by tenfold in the aqueous phase compared to their concentration in seawater ( 0.1 μeq·L−1). During freshening both were depleted by almost tenfold compared to their concentration in fresh groundwater ( 0.7 μeq·L−1). The depletion of Mn2+ is a sensitive marker for freshening because Mn2+ has a strong affinity to the solid phase. Moreover, this study shows that both Mn2+ and Ba2+ can be used as sensitive hydrogeochemical tools to distinguish between salinization and freshening events in the FSI zone in coastal aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language en Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Russak201635 Serial 197  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: