toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Egbi*, C.D.; Anornu, G.; Appiah‑Adjei, E.K.; Ganyaglo, S.Y.; Dampare, S.B. doi  openurl
  Title Evaluation of water quality using hydrochemistry, stable isotopes, and water quality indices in the Lower Volta River Basin of Ghana Type Journal Article
  Year 2019 Publication Environ. Dev. Sustain. Abbreviated Journal  
  Volume 21 Issue Pages 3033-3063  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ Egbi2018 Serial 124  
Permanent link to this record
 

 
Author (up) El Mandour, A.; El Yaouti, F.; Fakir, Y.; Zarhloule, Y.; Benavente, J. url  doi
openurl 
  Title Evolution of groundwater salinity in the unconfined aquifer of Bou-Areg, Northeastern Mediterranean coast, Morocco Type Journal Article
  Year 2007 Publication Environmental Geology Abbreviated Journal  
  Volume 54 Issue 3 Pages 491-503  
  Keywords Unconfined aquifer, Groundwater salinity, Seawater intrusion, Nitrate pollution, Lagoon, Morocco  Bou-Areg  
  Abstract The Bou-Areg plain in the Mediterranean coast at the North-eastern of Morocco is characterized by a semiarid climate. The aquifer consists of two sedimentary formations of Plio-quaternary age: the upper formation of fine silts and the lower one of coarse silts with sand and gravels. The aquifer is underlain by marly bedrock of Miocene age that dips toward the coastal lagoon of Bou-Areg. The

hydrodynamic characteristics vary between 10–4 and 10–3 m/s; and transmissivities range between 10–4 and 10–1 m2 /s. The general direction of flow is SW to NE, toward the lagoon. The aquifer is crossed by the river Selouane, which also ends in the lagoon. The groundwater is characterized by a high salinity that can reach 7.5 g/l. The highest values are observed in the upstream and in the downstream sectors of the aquifer. The temporal evolution of the physicochemical parameters depends on the climatic conditions and

piezometric variations. The analysis of the spatio-temporal distribution of the physico-chemical parameters suggests different sources of groundwater salinization: the seawater intrusion, the influence of marly gypsum-bearing terrains, and the influence of anthropogenic products as the agricultural fertilizers, which cause great nitrate concentrations that vary between 80 and 140 mg/l.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0943-0105 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ ElMandour2008 Serial 44  
Permanent link to this record
 

 
Author (up) El Yaouti, F.; El Mandour, A.; Khattach, D.; Benavente, J.; Kaufmann, O. url  doi
openurl 
  Title Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study Type Journal Article
  Year 2009 Publication Applied Geochemistry Abbreviated Journal  
  Volume 24 Issue 1 Pages 16-31  
  Keywords  
  Abstract Hydrogeological and geochemical data, in conjunction with the results of an electrical imaging tomographic survey, were examined to determine the main factors and mechanisms controlling the groundwater chemistry and salinity of the unconfined aquifer of Bou-Areg, on the Mediterranean coast of NE Morocco. In addition, statistical and geochemical interpretation methods were used to identify the distribution of the salinity. Multivariate statistical analysis (cluster and principal component factors) revealed the main sources of contamination. Groups A, B, and C in the cluster analysis and Factors 1–3 (Factor 1: CE, Cl−, K+, SO42-, and Mg2+; Factor 2: Ca2+, HCO3-, and pH; Factor 3: NO3-) represent the ‘signature’ of seawater intrusion in the coastal zone, the influence of marly-gypsum outcrops in the upstream zone, and anthropogenic sources, respectively. The ionic delta, the ionic ratio, the saturation index, and Stuyfzand’s method were applied to evaluate geochemical processes. The results obtained indicate, on the one hand, the phenomenon of salinization in both the coastal and the upstream zones, and on the other, the dilution of groundwater by recharge. Cation exchange is shown to modify the concentration of ions in groundwater. Locally, with respect to salinization processes in the coastal zone, the results of electrical imaging tomography show that salinity increases both with depth and laterally inland from the coastline, due to seawater intrusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ElYaouti2009 Serial 21  
Permanent link to this record
 

 
Author (up) El-Sayed, S.A.; Ramadan, A.B.; Salama, M.H.; Diab, M. openurl 
  Title Geochemical and Radiological Characteristics of Harvested Rainwater and Surficial Soil in El-Alamein-Alam El-Rum Area, Western Mediterranean Coastal Zone, Egypt Type Journal Article
  Year 2015 Publication Isotope and Radiation Research Abbreviated Journal  
  Volume 47 Issue 2 Pages 177-198  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ luqianxue.zhang @ El-Sayed2015 Serial 57  
Permanent link to this record
 

 
Author (up) ElKashouty, M. doi  openurl
  Title Groundwater quality distribution by geostatistical investigation (GIS), Nile Delta, Northern Egypt Type Journal Article
  Year 2019 Publication J. Environ. Chem. Ecotoxicol. Abbreviated Journal  
  Volume 11(1) Issue Pages 1-21  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number CUT @ phaedon.kyriakidis @ ElKashouty2019 Serial 110  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: