
1665 © IWA Publishing 2019 Hydrology Research | 50.6 | 2019

Downloaded from http
by guest
on 23 August 2021
A systematic comparison of statistical and hydrological

methods for design flood estimation
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ABSTRACT
We compare statistical and hydrological methods to estimate design floods by proposing a

framework that is based on assuming a synthetic scenario considered as ‘truth’ and use it as a

benchmark for analysing results. To illustrate the framework, we used probability model selection

and model averaging as statistical methods, while continuous simulations made with a simple and

relatively complex rainfall–runoff model are used as hydrological methods. The results of our

numerical exercise show that design floods estimated by using a simple rainfall–runoff model have

small parameter uncertainty and limited errors, even for high return periods. Statistical methods

perform better than the linear reservoir model in terms of median errors for high return periods, but

their uncertainty (i.e., variance of the error) is larger. Moreover, selecting the best fitting probability

distribution is associated with numerous outliers. On the contrary, using multiple probability

distributions, regardless of their capability in fitting the data, leads to significantly fewer outliers,

while keeping a similar accuracy. Thus, we find that, among the statistical methods, model averaging

is a better option than model selection. Our results also show the relevance of the precautionary

principle in design flood estimation, and thus help develop general recommendations for

practitioners and experts involved in flood risk reduction.
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INTRODUCTION
At the heart of scientific and applied hydrology lies the well-

known problem of how to obtain a reliable estimate of

extreme flows that might occur at a given location (Blöschl

et al. ). The need for reliable estimates – especially for

extreme conditions – has become increasingly important,

partly because of the need to plan and develop strategies

that will mitigate against frequent floods that might occur

due to climate change (Castellarin et al. ). For instance,

flood risk assessment and the design of protection measures

often require a reliable estimate of extreme flows with a

given chance of occurrence (e.g., the 1% annual chance
flood) from limited discharge records (Okoli et al. ).

The engineering community commonly refers to these esti-

mated extreme flows as ‘design floods’ because they have

influence on some key parameters (i.e., size, dimensions,

cost and safety) that are optimized for any given water

related infrastructure (Rasekh et al. ; Brandimarte &

Di Baldassarre ). Two main methods are presently

used for the estimation of design floods:

1. statistical methods – generally referred to as ‘flood

frequency analysis’ – which often consist of fitting a
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probability distribution function, such as the generalized

extreme value distribution (GEV), to a record of annual

maximum flows (AMF) obtained for a gauged location.

The fitted probability model is extrapolated to a flow

magnitude corresponding to a selected probability of

exceedance or return period (Moran ; Klemeš

a). When the catchment is ungauged, regional fre-

quency analysis of the type developed by Hosking &

Wallis () is one out of many techniques that are

used for design flood estimations. Old concepts, such as

probable maximum precipitation (PMP) developed by

Hershfield (), which means the statistical estimation

of the maximum precipitation to derive a probable maxi-

mum flood (PMF), are still in use for the design of

hydraulic structures. However, the concept of PMP

(including PMF) has been criticized due to the lack of

physical justification for upper boundaries in meteorolo-

gical factors used for storm maximization (Yevjevich

).

2. Hydrological methods, which often consist of estimating

design floods generally based on the use of a mathemat-

ical model that describes the processes accounted for in

the transformation of precipitation to runoff at a given

catchment. Meteorological data (rainfall, snow and

temperature) are common examples of inputs into a

rainfall–runoff model with simulated river discharges

as the output on completion of a model run (Beven

). Rainfall–runoff models can be used in two differ-

ent simulation modes for the estimation of a design

flood. The first one is the ‘event-based simulation’

(EBS) such as the type developed by Mulvaney (),

otherwise known as the rational method. The event-

based approach requires the selection of a design rainfall

from an intensity duration frequency (IDF) curve of rain-

fall with a given duration and assumed profile and uses

it as input into the rainfall–runoff model to derive the

flood hydrograph (Rogger et al. ). Eagleson ()

proposed a different kind of event-based modelling

that requires the coupling of a stochastic weather gen-

erator with a catchment response function, which in

his study was a kinematic wave model. Event-based

approaches are limited in the fact that they do not

have a realistic account of the role of antecedent moist-

ure content in runoff generation. The second simulation
om http://iwaponline.com/hr/article-pdf/50/6/1665/759126/nh0501665.pdf
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mode is known as ‘continuous simulation’ (CS) and

requires – just like event-based simulation – the coupling

of a stochastic weather model with a runoff model. This

approach treats the discharge as a single term without

prior separation into overland flow and baseflow. The

problem of antecedent moisture content of the catch-

ment is addressed implicitly as part of the modelling

procedure (Calver & Lamb ). CS can be viewed as

a consolidated technique for flood estimation hydrology

(Blazkova & Beven ; Cameron et al. ; Pathiraja

et al. ). It is worth noting that the two hydrological

methods of estimation (EBS and CS) are still influenced

by the same subjective choices, such as choice of RR

model and method of parameter estimation, etc.

Linsley () recommends in his seminal paper on

flood estimates testing and discussing the accuracy of

hydrologic methods used for flood estimation. The need to

test methods used for flood estimation is important for

both scientific enterprise and also economic studies that

are usually part of flood mitigation plans. One area that

has led the charge in testing methods for flood estimation

is statistical hydrology, with the literature awash with studies

looking at a range of topics, for example, the influence of

type of flow data, i.e., block maxima versus peaks over a

threshold (Cunnane ; Madsen et al. ), errors due

to rating curves (Di Baldassarre et al. ; Steinbakk et al.

), choice of plotting positions (Cunnane ), the use

of model selection techniques (Di Baldassarre et al. ;

Laio et al. ), or the influence of fitting methods and

choice of distributions (Slack et al. ; Landwehr et al.

), just to mention a few. The statistical approach is

considered the standard method for design flood estimation

but it has also faced a great deal of criticism. The main argu-

ment against its use is that the structure of the probability

model used in extrapolating the flow record is derived

based on axioms rooted in probability theory – a branch of

mathematics whose main mission does not include the phys-

ical representations of flood generation processes (Klemeš

, a, b). Therefore, extrapolating the flow

record with a rainfall–runoff model can provide a more

solid physical ground compared to statistical methods,

since the former represents a formal statement about flood

generation processes and allows including the influence of
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threshold effects (e.g., catchment wetness) that are known to

affect the shape of the flood frequency curve. Thus, rainfall–

rainfall modelling can support both understanding the

underlying flood generation processes and interpreting

them.

There are only a handful of studies dealing with the

comparison of statistical approaches, event-based and

continuous modelling. Grimaldi et al. (, ) compared

continuous modelling with event-based approaches in small

ungauged watersheds in Italy using spatially uniform rainfall

at sub-hourly resolution. They concluded that the event-

based approaches tend to underestimate design hydrographs

in terms of flood volume and duration. Rogger et al.

() compared statistical, event-based and continuous

approaches in ten small Austrian catchments based on

observation data at sub-hourly resolution. Their main find-

ing was that in catchments with a high storage capacity

there can be a step change in the flood frequency curve

when exceeding a certain storage threshold. This step

change cannot be represented by statistical flood frequency

analysis, which thus tends to underestimate floods in

such catchments. Breinl () examined different types of

weather generators coupled to a lumped hydrological

model in two small Alpine catchments, concluding that

continuous modelling and statistical approaches can lead

to comparable results at daily resolution. Oliver et al.

() conducted a probabilistic flood risk assessment at

daily time scale, starting from a set of stochastic weather

models (Wilks ; King et al. ; Breinl et al. )

coupled to rainfall–runoff modelling. They conducted a

full flood risk assessment across four major river catchments

in India (up to an area of 21,100 km²), concluding that

there is a need to generally better understand extreme

hydrological events at the regional scale and, more specifi-

cally, examine the role of weather models, joint probability

approaches and efficient simulations in continuous model-

ling. Winter et al. () compared continuous modelling,

event-based and statistical approaches in small Alpine

catchments in Austria using sub-daily time series. While

statistical and continuous modelling led to comparable

results for design floods, event-based approaches led to an

underestimation of flood volumes. Winter et al. () how-

ever state that ‘it is hardly possible to identify the ‘correct’

estimation, as all methods are based on the extrapolation
://iwaponline.com/hr/article-pdf/50/6/1665/759126/nh0501665.pdf
of observed patterns in one way or another’. All these studies

mentioned above have in common that they compare

different methods for deriving design floods with real-

world observations.

However, design floods by their nature represent flows

whose magnitudes are beyond what has been observed in

the flow records. Since they are not known a priori in

any practical application, it becomes difficult to assess the

performance of different methods that are typically used

for their estimation. Thus, in this study, we propose a frame-

work that considers a synthetic scenario as ‘truth’ and use it

as a benchmark to evaluate results derived from the two

methods of estimation. A synthetic scenario as used in

this paper refers to a hydrological model that suggests a

representation of our understanding about the real word,

i.e., in our case, the flood generation processes. Any rain-

fall–runoff model and a stochastic weather generator

(ranging from simple to complex models) can be selected

and its parameters calibrated with available observations.

The calibrated models (a coupled weather and rainfall

runoff model) are considered to be reality and their outputs

– synthetic rainfall and discharges – assumed to be true

realizations of the modelled process. This framework

also allows the true design flood to be known in advance.

Bashford et al. () used a similar concept based on

assumed truths to investigate the role of different kinds of

data sets in model structure and parameter identification.

However, numerical experiments that require the use of a

certain model as the benchmark are affected by the fact

that the selected model does not represent all processes,

and the processes represented may not be the same as

reality. Hence, they are affected by different sources of

uncertainties (Beven et al. ).
METHODS

Simulation framework

Figure 1 illustrates the structure of the framework developed

to test the approaches to design flood estimation. The frame-

work is structured into four experiments; experiments A and

B refer to the statistical methods, while C and D refer to the

hydrological methods (CS).



Figure 1 | The framework used for comparing two estimation methods (statistical versus continuous simulation) based on four different types of numerical experiments.
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The four experiments are connected to the benchmark

scenario which is set up as follows:

1. A catchment is selected where meteorological inputs and

information about discharge are available to calibrate

a weather generator and rainfall–runoff model, respect-

ively. The calibrated models are treated as the true

representation of the process understanding.

2. The calibrated weather generator is used to compute a

long synthetic sample of rainfall that is used as input

into the rainfall–runoff model to derive a long synthetic

sample of discharges.

3. AMF are extracted from the derived discharge sample

and design floods for different return periods are

computed using the Weibull plotting positions (Cunnane

). These design floods are used as the benchmark

to compare the estimates based on statistical and CS

approaches.
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Two separate experiments (A and B) are used to test

the performance when design flood is estimated based on

statistical methods. Experiment A refers to when the esti-

mation is based on a model selection criterion. Here, the

Akaike information criterion is used to select the best

probability distribution to use for estimation (Akaike ).

Experiment B refers to a model-averaged estimate, i.e.,

the estimates from candidate probability distributions are

weighted equally to yield a single-valued estimate (see

Okoli et al. ). Table 1 shows the four candidate prob-

ability distributions considered in this study in terms of the

PDF (probability density function) or CDF (cumulative distri-

bution function). Experiment A is implemented as follows:

4. select a sub-sample of discharge data from the long

sample of synthetic river discharge derived in Step 2;

5. conduct model selection using AIC and select the best

fitting probability distribution;



Table 1 | Probability distribution functions used in this study as operative models

Probability model Parameters PDF or CDF

Gumble or EV1 (θ1, θ2) F(x, θ) ¼ exp[�exp(�(x� θ1)=θ2)]

Generalized Extreme Value (GEV) (θ1, θ2, θ3) F(x, θ) ¼ exp � 1� (θ3(x� θ1)=θ2)
1
θ3

� �h i
Gamma or Pearson Type III (P3) (θ1, θ2, θ3) f(x, θ) ¼ [1=(jθjΓ(θ3 þ 1))]((x� θ1)=θ2)

θ3exp(� [(x� θ1)]=θ2)

Log-Normal (LN) (θ1, θ2) f(x, θ) ¼ 1
x

ffiffiffiffiffiffiffiffiffiffi
2πθ2

p exp �1
2

log x� θ1
θ1

� �2
" #
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6. estimate design floods for a given return period using the

best probability distribution. Compute the percentage

relative error as a way to compare between the estimated

design flood and the true design flood derived in Step 3.

While experiment B is implemented as follows:

7. select a sub-sample of discharge data from the long

sample of synthetic river discharge derived in Step 2;

8. conduct arithmetic model averaging by assigning equal

weights to all candidate distributions;

9. estimate design floods for a selected return period and for

each candidate probability distribution. The estimates are

averaged by taking the mean of all design flood estimates

to yield a single-valued estimate. Compute the percentage

relative error as a way to compare between the estimated

design flood and the true design flood derived in Step 3.

Experiments C and D are similar with the only differ-

ence being the hydrological model selected for use in CS.

The two experiments are implemented as follows:

10. select a sub-sample of synthetic weather data and use it

to calibrate a weather generator. Generate long time

series of synthetic weather data and use that as input

into a simple hydrological model (experiment C) or a

complex hydrological model (experiment D);

11. simulate long time series of discharges and estimate the

design flood for a selected return period using Weibull

plotting positions. After that, compute the percentage

relative error to compare the estimated design flood

with the true design flood derived in Step 3.

In order to investigate the influence due to sampling

uncertainty, experiments A, B, C and D are repeated m
://iwaponline.com/hr/article-pdf/50/6/1665/759126/nh0501665.pdf
times, where m equals the number of sub-samples that can

be created from the long samples derived in Step 3 and

used in Step 10, and for different return periods.
Weather generator

To simulate long time series of catchment rainfall data we

used a univariate Markovian rainfall generation algorithm,

as proposed by Richardson (). Markovian rainfall mod-

elling has been proven robust over decades for various

applications (e.g., Gabriel & Neumann ; Stern & Coe

; Stowasser ; Mhanna & Bauwens ). The sim-

plest model setup for univariate rainfall modelling of

rainfall occurrence is a two-state (i.e., dry or wet day)

first-order Markov process (i.e., the rainfall state on a par-

ticular day only depends on the previous day). According

to the AIC (Katz ; Breinl et al. ), a two-state

second-order Markov chain turned out to be most appropri-

ate for the present rainfall time series in each calendar

month. The model was fitted to the 12 calendar months

to reproduce the seasonality of rainfall occurrences. To

simulate rainfall amounts, we randomly sampled from a

mixed exponential distribution on rainy days, which was

estimated using maximum likelihood (Wilks ). The

mixed exponential distribution was likewise fitted separ-

ately to each calendar month to reproduce the

seasonality of rainfall amounts. Although the Gamma dis-

tribution has been widely applied in the simulation of

daily rainfall, its validity is less than assumed (Vlcek &

Huth ) and the mixed exponential distribution is a

good alternative (Foufoula-Georgiou & Lettenmaier ;

Wilks ; Li et al. ). The corresponding evapotran-

spiration and temperature time series were simulated by a
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random resampling procedure on an annual basis, i.e., we

randomly resampled entire years of temperature and evapo-

transpiration to build new time series. Both variables were

resampled from same observed year to maintain the inter-

variable correlation. The rationale behind this simplified

approach for the simulation of evapotranspiration and

temperature derives from the short time series available

for our study area. More sophisticated simulation algor-

ithms for evapotranspiration or temperature such as

autoregressive models (e.g. Breinl et al. ), which can

likewise better reproduce dry and wet temperatures, require

a more solid data base meaning comparatively long obser-

vation time series.

Complex hydrological modelling

We selected the HBV model (Bergström ; Seibert & Viz

) as the complex (in a relative sense) hydrological

model to represent the rainfall–runoff processes (Merz &

Blöschl ; Bardossy ; Jin et al. ; Demirel et al.

; Vetter et al. ) to produce the benchmark scenario.

The main model inputs are daily time series of precipitation

rainfall, evapotranspiration and temperature, as well as

estimates of potential evaporation. The HBV model is charac-

terized by four model modules, which describe precipitation,

soil moisture, upper zone and lower zone routing. In the pre-

cipitation routine, a degree-day approach is used to compute

the sum of snowmelt and rainfall (P, mm/day). The soil moist-

ure routine simulates the unsaturated-zone process, in which

the soil wetness is estimated as:

R
P
¼ SM

FC

� �β

(1)

where R is the recharge to the upper zone (mm/day), SM is

the soil moisture storage (mm), FC is the maximum field

capacity (mm), and β is the parameter that describes the

non-linearity of therocess. Besides the recharge R to the

upper zone UZ, the loss of water in the SM zone is due to

evapotranspiration processes. The capillary flux (CF) enter-

ing into the SM zone by capillary action from the upper

zone is estimated as:

CF ¼ CFLUX 1� SM
FC

� �
(2)
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where CFLUX is the parameter indicating the maximum

value of capillary flux (mm/day). The main input for the

lower zone is the percolation from the upper zone. Finally,

the river discharge is calculated as the sum of the quickflow

QQ (from the upper zone) and baseflow QQ (from the lower

zone) as (Seibert & Vis ):

QQ ¼ K0 �max(UZ� PUZ)þK1 �UZ

QB ¼ K2 � LZ
(3)

where UZ and LZ are the model states representing the

water content in the upper zone and lower zone, respect-

ively. K0, K1 and K2 are recession coefficients, while PUZ

is a threshold value for the upr zone.

In our experiment, 18 parameters of the HBV model

were calibrated with the least squares minimization tech-

nique using the Broyden–Fletcher–Goldfarb–Shanno variant

of the Davidon–Fletcher–Powell minimization (DFPMIN)

algorithm (Press et al. ). In particular, we aimed at mini-

mizing the root mean squared error (RMSE) between the

synthetic and the simulated annual maximum flow.
Probability models: model selection and averaging

of estimates

Different kinds of probability models have been proposed

for the estimation of design floods in hydrology (El Adlouni

et al. ). Typically, a range of probability models are

specified as potential candidates by the hydrologist and

the model to be selected is usually based on a visual assess-

ment of the fit to plotted discharge values, on the use of

some metric based on goodness-of-fit or any model selection

criterion. The ‘model selection’ criterion assumes that for

the data available there is a single correct, or at least ‘best’

model that could be used for statistical inference. Therefore,

the problem is formulated as a data-based search, over the

candidate models, for that single best model (but with

estimated parameters) that will be used for design flood esti-

mation. The two well-known model selection criteria based

on information-theoretic selection are the AIC and the

Bayesian information criterion (BIC). For their mathemat-

ical and philosophical backgrounds, the reader is referred

to Burnham & Anderson ().
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Since all models (which includes both statistical and

physical) are conceptually wrong, and the capability of

different model structures and parameter sets to give reason-

able fits to available data has been shown to be the normal

state of affairs (Beven ), it is clear that any modelling

exercise is faced with model structure uncertainty. One

way to deal with model structure uncertainty is to use all

candidate probability models for design flood estimation

where the final estimate is a weighted average of all individ-

ual estimates. This process is commonly referred to as model

averaging (Höge et al. ). The weights can be assigned

in two ways. First, equal weights can be assigned to all

probability models and this process is known as arithmetic

model averaging (see Graefe et al. ; Okoli et al. );

it is the same as taking the mean of all design flood

estimates. Second, the weights can also be assigned depend-

ing on how best the probability model fits the data, i.e., a

weighted average where the probability model that fits

the data best gets a higher weight and vice versa. Bayesian

inference (Hoeting et al. ) is one way to estimate the

weights assigned to a range of models considered for flood

estimation purposes and Wood & Rodríguez-Iturbe ()

showed an example application in flood frequency analysis.

Höge et al. () provide a review of the theoretical back-

grounds of Bayesian model averaging (and selection) with

hydrologists as the target audience.

In this study we have used AIC as a model selection

criterion, while model averaging was applied by taking the

mean of design flood estimates from the candidate models.
Simple hydrological model

The linear reservoir (LR) model is used as a simple hydrolo-

gical model to estimate the annual maximum flow. The LR

model is represented as a tank having rainfall as input, the

reservoir storage as model state, and discharge as model

output. The LR is based on the continuity equation and on

the assumption that the outflow of a given catchment is lin-

early related to its storage. Combining these two concepts,

the LR model can be represented as:

Q ¼ P 1� e
t
K

� �
(4)
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where K is the only parameter of the LR model and rep-

resents the storage capacity of the catchment. The main

assumption in the LR model is that there are no losses

from evapotranspiration and percolation. LR models have

been used for different kinds of investigation in hydrology,

e.g., the influence of land use change in mountainous

catchments (Buytaert et al. ) and seasonal changes in

surface meltwater recharge and glacier storage (Hannah &

Gurnell ).

The calibration of the LR model is performed using

a grid-search approach with 1,000 possible values of the

parameter K. The optimal value of K refers to the one

which minimizes the RMSE between the observed and the

simulated annual maximum flow.
EXAMPLE APPLICATION

Test site

The application of the proposed framework is based on the

observed rainfall data available in the Brue catchment,

located in Somerset, South West England. The Brue catch-

ment has a predominantly rural use and modest slope

(Moore et al. ). The drainage area of the catchment

is about 135 km2. The average annual rainfall is about

867 mm, while the average flow values (measured at the

outlet section of Lovington) are about 1.92 m3/s.

The daily precipitation used as input in the univariate

Markovian rainfall generation model is supplied by the

British Atmospheric Data Centre from the NERC Hydrolo-

gical Radar Experiment Dataset (HYREX) project (Moore

et al. ; Wood et al. ) from 1965 to 2015. Unfortu-

nately, temperature and evapotranspiration values were

available only between 1994 and 1999, so that it was

not possible to use sophisticated simulation algorithms to

stochastically generate long time series. For this reason,

we resampled on an annual basis the information in those

few years and calculate the corresponding evapotranspira-

tion and temperature time series for the entire period of

the rainfall generation (see the section ‘Weather generator’).

The parameters of the complex hydrological model

(HBV) applied on the Brue catchment were calculated by

Shrestha et al. ().
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Numerical experiments

We conducted four different experiments that are linked to

the benchmark scenario that assumes a selected weather

and hydrological model as true representation of our under-

standing of the processes. In this benchmark scenario, we

first used the weather generator to compute 10,000 years

of synthetic weather data that are used as input to drive a

complex hydrological model (HBV). The resulting 10,000

years of synthetic discharge data are then assumed to be

the ‘truth’, and the design floods of interest can be derived

based on the sample by computing the return periods

based on the Weibull plotting positions (Cunnane ).

These design floods are treated as truth and used as

benchmarks for all experiments. Experiment A describes

the common statistical frequency analysis, i.e., based on a

sub-sample of the generated discharge time series (in our

case 50 years) and used for estimating the parameters of

four different probability distributions by the method of

maximum likelihood. The best probability distribution is

selected using AIC and then used for design flood estimation

AIC. Four different probability distributions (as shown in

Table 1) were used as candidate models for estimating the

design floods. The fitting procedure is conducted for 200

consecutive samples of 50 years (i.e., the entire 10,000 syn-

thetic years), to allow for uncertainty analyses. Experiment

B is similar to Experiment A, but fits a range of probability

models to the 50 years’ samples (and like Experiment A,

200 times for uncertainty analysis). Based on the range of

models, a weighted average of design flood estimates is

computed by assigning equal weights to the candidate

probability distributions. Based on these assigned weights,

a weighted average of design floods is computed. Exper-

iments C and D describe the continuous model

experiments. In Experiment C, a sub-sample of 50 years of

the synthetic weather time series is used to calibrate the

weather generator and to generate 10,000 years of estimated

weather time series. Accordingly, the same sub-sample of

50 years of synthetic rainfall is used to calibrate a simple

hydrological model (LR) by minimizing the error between

model results and the sub-sample of 50 years of synthetic dis-

charges from the benchmark scenario. The estimated

weather time series are then fed into the calibrated simple

hydrological model to generate 10,000 years of synthetic
om http://iwaponline.com/hr/article-pdf/50/6/1665/759126/nh0501665.pdf

021
discharge. The design floods are derived by Weibull plotting

positions. Both the calibration of the weather generator and

the hydrological model are conducted 200 times to cover the

entire 10,000 years of the benchmark scenario. Experiment

D is similar to Experiment C with the difference that a

relatively complex hydrological model (HBV) is applied

instead of the simple one (LR). Finally, the resulting

design floods from all four experiments are compared to

the ‘true’ design floods from the benchmark scenario.

Results

The accuracy and precision of design flood estimates based

on both statistical and hydrological methods were assessed

by conducting four different numerical experiments.

Design flood estimates are made for return periods 2, 5,

10, 20, 50, 100, 200, 500 and 1,000 years. In this study,

2 years to 50 years are considered ‘low to moderate’ return

periods, which are typically the range of return periods

considered for the design of urban drainage systems.

Return periods ranging from 100 to 1,000 years are con-

sidered as high return periods and are representative of

the range selected for river structures ranging from diversion

weirs to dams.

Figure 2(a) and 2(b) show details of performance when

design flood is estimated based on statistical approach.

Figure 2(a) refers to the distribution of errors when design

flood estimate is based on model selection for each sub-

sample of synthetic discharge (50 years) and repeated for

200 samples. Figure 2(b) refers to distribution of errors

when design flood estimate is based on model averaging.

There is a general tendency to underestimate for high

return periods, i.e., from 50 years and above.

Also, the boxplots show that model averaging is more

robust since it has no big outliers compared to model selec-

tion. For instance, Figure 2 shows that for return periods

ranging from 200 to 1,000 years, model selection leads to

an overestimation in the range of 52% to 150%, while for

model averaging it is 20% to 25%. Table 2 summarizes the

bias for statistical methods (but also hydrological models

used for CS) in terms of their median values. The two

statistical methods led to similar performance in accuracy.

In further analysis conducted for Experiment A, we

found that the four candidate probability distributions



Figure 2 | Boxplots show the precision of estimated design floods for different return periods and estimation methods.

Table 2 | Accuracy of design flood estimates for different estimation methods and return periods

Remarks Return period (years) Model selection (%) Model averaging (%) Linear reservoir (%) HBV (%)

Low to moderate 2 0.7 2 8 8
5 1.5 2.5 22 10
10 1.2 0.9 �5 13
20 �3 �4 �7 13
50 �12 �15 �19 9

High 100 �17 �19 �25 8
200 �22 �24 �29 8
500 �26 �29 �35 7
1,000 �27 �29 �36 10
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(i.e., Log normal, GEV, Gamma and EV1) were selected

only 19, 63, 57, and 61 times, respectively, for the 200 sub-

samples. Their performance in terms of accuracy and

precision is shown in Figure 3. There is a general tendency

to underestimate the design flood for higher return periods

for all probability distributions. It is shown that GEV esti-

mates led to higher variance in errors and the large

outliers in Experiment A might be due to its frequent

selection as the best model.

Experiments C and D (in Figure 2) show the perform-

ance when estimation is based on CS. The LR reservoir

used in Experiment C underestimates the design flood for
://iwaponline.com/hr/article-pdf/50/6/1665/759126/nh0501665.pdf
high return periods but with less variance in the errors.

For a model with only one model parameter to calibrate,

its precision is still better compared to statistical methods.

Four different objective functions were used to calibrate

the LR to see if there would be any improvement of

some sort. The results presented in Figure 4 suggest a simi-

lar performance of LR for the four objective functions. The

lower right-hand panel shows the performance when the

true model that generated the calibration data is selected

for estimation purposes. There is a tendency to underesti-

mate for all return periods and the variance in error is, in

part, due to limited sampling. Figure 5 shows the



Figure 3 | Accuracy and precision of the four candidate probability distributions used for design flood estimation.

Figure 4 | Boxplots show the precision of estimated design floods when different goodness-of-fit measures are used to evaluate the calibration of linear reservoir model.
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quantile–quantile plots of simulated AMF against synthetic

AMF, and developed for both LR and HBV models. The

quantiles of LR tend to diverge significantly from the
om http://iwaponline.com/hr/article-pdf/50/6/1665/759126/nh0501665.pdf
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theoretical line, which implies that the distribution of

AMF derived using LR is different from those derived

from the HBV model.



Figure 5 | Q–Q plots show the quantiles of the AMF simulated using LR and HBV on the vertical axis, respectively, and quantiles of the synthetic AMF (derived from HBV model and treated

as true) on the horizontal axis.
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DISCUSSION AND CONCLUSIONS

We proposed a simulation framework to compare statistical

and hydrological methods for the estimation of design

floods. The use of synthetic scenarios (i.e., assuming a

given model as the truth) is exploited in order to assess

the performance and errors of alternative approaches. To

illustrate the framework, we showed an example application

where we used model selection (Experiment A) and model

averaging (Experiment B) as statistical methods, and con-

tinuous simulations made with a simple (Experiment C)

or a perfect (Experiment D) rainfall–runoff model as

hydrological methods.

The results of our numerical exercise showed that, as

expected, using a perfect rainfall–runoff model (Experiment

D) provides design flood estimates with the least errors.

Such an experiment, however, does not reflect any real appli-

cations, because a perfect hydrological model does not exist

in the real world. It was only meant to get a baseline for

the discussion of the results obtained with other methods.

Among them, despite its simplicity, the use of a LR model

to estimate design floods (Experiment C) was associated

with relatively small parameter uncertainty and limited

errors for high return periods, i.e., the range from 100 to
://iwaponline.com/hr/article-pdf/50/6/1665/759126/nh0501665.pdf
1,000 years. Statistical methods (Experiments A and B) per-

formed better than the latter (Experiment C) in terms of

median errors for high return periods (Table 2), but the

variance of their errors is larger (Figure 2). While errors in

Table 2 are similar for the two statistical methods, selecting

the best fitting probability distribution (Experiment A) is

associated with numerous outliers, as depicted by the box-

plots in Figure 2. This is because a limited sample can lead

to choosing the wrong probability distribution, which can

(by chance) fit well the limited data set, but can then generate

large (often unacceptable) errors for high return periods.

On the contrary, we found that using multiple probability

distributions (Experiment B), regardless of their capability of

fitting the data, leads to significantly fewer outliers (Figure 2),

while keeping similar average errors (Table 2). Thus,

reflecting the Keynesian saying that ‘it is better to be approxi-

mately right than precisely wrong’, from our point of view,

model averaging is a better option than model selection.

While these outcomes are unavoidably associated with

the test site considered here, as well as the choice of the

perfect model (HBV) and the specific statistical and

hydrological methods compared, our framework can be

easily applied elsewhere to test alternative approaches for

design flood estimation. Moreover, our results help develop
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general recommendations. They show that, even in this

(simple) benchmark scenario, statistical and hydrological

methods can out- or under-perform each other because of

many other sources of uncertainty that come into play,

e.g., limited sample size. This suggest that, in the real

world, relying on a single method (be it either statistical or

hydrological) can lead to large errors in design flood esti-

mation. As such, we argue that practitioners should always

use both statistical and hydrological methods. Both methods

are based on consolidated theories, and have complemen-

tary advantages and limitations. As such, by following the

precautionary principle (Foster et al. ), which calls for

erring on the side of least consequences, one should get

two (or more) design flood estimates based on alternative

methods and then pick the maximum value among them.

This approach will minimize the likelihood of underestimat-

ing the design flood, and therefore help support the

development and planning of measures for flood risk

reduction.
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