toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Qi, H.; Ma, C.; He, Z.; Hu, X.; Gao, L. url  doi
openurl 
  Title Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China Type Journal Article
  Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume 650 Issue Pt 1 Pages 878-890  
  Keywords Brine and seawater intrusion; Groundwater salinization; Hydrochemistry; Lithium isotope; Southern coastal plain of Laizhou Bay  
  Abstract In the southern coastal plain of Laizhou Bay, due to intensive exploitation of groundwater since the early 1970s, the shallow aquifer has been severely influenced by saltwater intrusion, which causes the extraction to shift from shallow to deeper aquifer changing the hydrogeological condition greatly. This study was conducted to investigate the groundwater salinization using hydrochemistry and H, O and Li isotope data. Dissolved Li shows a linear correlation with Cl and Br in seawater, brine and saline groundwater indicating the marine Li source, whereas the enrichment of Li in surface water, brackish and fresh groundwater is impacted by dissolution of silicate minerals. The analyses of hydrochemistry and isotopes (H, O and Li) indicate that brine originated from seawater evaporation, followed by mixing processes and some water-rock interactions; shallow saline groundwater originated from brine diluted with seawater and fresh groundwater; deep saline groundwater originated from seawater intrusion. The negative correlation of δ(7)Li and Li/Na in surface water, brackish and fresh groundwater is contrary to the general conclusion, indicating the slow weathering of silicate minerals and hydraulic interaction between surface water and shallow groundwater in this area. The analyses of hydrochemistry and isotopes (Li, H and O) can well identify the salinity sources and isotope fractionation in groundwater flow and mixing, especially groundwater with high TDS. As both mixing with saltwater and isotope fractionation can explain the combination of high δ(7)Li and low TDS in brackish groundwater, isotope fractionation may limit their use in recognizing salinity sources of groundwater with low TDS.  
  Address School of Environmental Studies, China University of Geosciences, Wuhan 430074, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30308862 Approved no  
  Call Number THL @ christoph.kuells @ Serial 184  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: