toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Daniele, L.; Vallejos, Á.; Corbella, M.; Molina, L.; Pulido-Bosch, A. url  doi
openurl 
  Title Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: The case of Aguadulce (SE Spain) Type Journal Article
  Year 2013 Publication Applied Geochemistry Abbreviated Journal  
  Volume 29 Issue Pages 43-54  
  Keywords  
  Abstract The hydrogeological unit of Aguadulce (Campo de Dalías aquifers, SE Spain) has a complex geometry. This fact, together with a continuous rise in water demand due to intensive agriculture and tourism create problems for groundwater quantity and quality. In this paper classic geochemical tools managed by means of GIS software and geochemical simulations are combined to delineate, identify and locate the possible physicochemical processes acting in the Aguadulce groundwater. Two main aquifers can be distinguished: the carbonate or lower aquifer of Triassic age, and the calcodetritic or upper aquifer of Plio-Quaternary age. Groundwaters from the latter are more saline and, assuming all chlorinity originates from seawater intrusion, the seawater contribution to their composition would be up to 7%. Nevertheless the carbonate aquifer appears not to be homogeneous: it is compartmentalised into 4 zones where different processes explain the different groundwaters compositions. Zone 4 samples (E margin of the carbonate aquifer) resemble those of the Plio-Quaternary aquifer, where calcite precipitation, dolomite and gypsum dissolution and some cation exchange (water–rock interaction) together with seawater–freshwater mixing occur. In contrast, water–rock interaction predominates in zones 1 and 3 of the carbonate aquifer. Moreover, zone 2 samples, located between zones 1 and 3, are explained by water–rock interaction in addition to mixing with Plio-Quaternary aquifer waters. The combination of geochemical simulations with GIS and hydrogeochemical analyses has proven to be effective in identifying and locating the different physicochemical processes in the aquifer areas, thus improving understanding of hydrogeochemistry in complex aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Daniele2013 Serial 19  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: